((6x^(2)-24x)/(2x))/((x^(2)-16)/(7x^2))

Simple and best practice solution for ((6x^(2)-24x)/(2x))/((x^(2)-16)/(7x^2)) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((6x^(2)-24x)/(2x))/((x^(2)-16)/(7x^2)) equation:


D( x )

(x^2-16)/(7*x^2) = 0

7*x^2 = 0

2*x = 0

(x^2-16)/(7*x^2) = 0

(x^2-16)/(7*x^2) = 0

1*x^2 = 16 // : 1

x^2 = 16

x^2 = 16 // ^ 1/2

abs(x) = 4

x = 4 or x = -4

7*x^2 = 0

7*x^2 = 0

7*x^2 = 0 // : 7

x^2 = 0

x = 0

2*x = 0

2*x = 0

2*x = 0 // : 2

x = 0

x in (-oo:-4) U (-4:0) U (0:4) U (4:+oo)

((6*x^2-(24*x))/(2*x))/((x^2-16)/(7*x^2)) = 0

((6*x^2-24*x)/(2*x))/((x^2-16)/(7*x^2)) = 0

(7*x^2*(6*x^2-24*x))/(2*x*(x^2-16)) = 0

6*x^2-24*x = 0

6*x*(x-4) = 0

x-4 = 0 // + 4

x = 4

6*x*(x-4) = 0

(6*7*x*x^2*(x-4))/(2*x*(x^2-16)) = 0

( 6*x )

6*x = 0 // : 6

x = 0

( 7*x^2 )

7*x^2 = 0 // : 7

x^2 = 0

x = 0

( x-4 )

x-4 = 0 // + 4

x = 4

x in { 0}

x in { 4}

x belongs to the empty set

See similar equations:

| -4x-9y=27 | | 5/5x-10 | | (x-y)-(-x+y)= | | X/12=36 | | 17d^2-6d=0 | | 4y+14+2y=8y+4 | | (3a-b)-(6a+2b)= | | 4(2x-5)=7(x+2) | | 44=30n | | (x-y)-(x+y)= | | (8m+6n)-(7m-5n)= | | 24=3/4y | | -12x+5y=17 | | x+2.6x=180 | | 2x=15-y | | (6m+2np)-(3m-5np)= | | -0.5+y=6x | | (x+3)12=8(4x-5) | | 7c-9=9+7c | | 9x+13=3+9x | | 30+5y=30+5y | | x=(-10)-8 | | (4x-2)^-2/3=0 | | -4x-41=28-4x | | y=5x^2-4x-7 | | Y=ln(3x^2-4x) | | 2x^2-22=12x | | 13y+3x=110 | | 50-9.8t^2/2 | | 3x+13y=110 | | 6x+12y=8936 | | m=24-3 |

Equations solver categories